Respuesta :
Real life situations can be model by a function.
- The cost per passenger at 370 mph and 520 mph are $238.41 and $227.01 respectively.
- The domain of C is x > 0
- The ground speed that minimizes cost is 569 mph
Given
[tex]C(x) = 100 + \frac x9 + \frac{36000}{x}[/tex]
(a) The ground speed at 370 mph and 520 mph
This means that: [tex]x = 370[/tex] and [tex]x = 520[/tex]
When [tex]x= 370[/tex], we have:
[tex]C(370) = 100 + \frac{370}9 + \frac{36000}{370}[/tex]
[tex]C(370) = 238.41[/tex]
When [tex]x = 520[/tex], we have:
[tex]C(520) = 100 + \frac{520}9 + \frac{36000}{520}[/tex]
[tex]C(520) = 227.01[/tex]
(b) The domain:
We have:
[tex]C(x) = 100 + \frac x9 + \frac{36000}{x}[/tex]
For the plane to move, the ground speed (x) must be greater than 0.
So, the domain of C is: [tex]x > 0[/tex]
(c) See attachment for the graph of c(x)
(d) A table of x = 0 and x = 50.
When [tex]x = 0[/tex], we have:
[tex]C(x) = 100 + \frac x9 + \frac{36000}{x}[/tex]
[tex]C(0) = 100 + \frac 09 + \frac{36000}{0}[/tex]
[tex]C(0) = und efine d[/tex]
When [tex]x = 50[/tex], we have:
[tex]C(x) = 100 + \frac x9 + \frac{36000}{x}[/tex]
[tex]C(50) = 100 + \frac{50}9 + \frac{36000}{50}[/tex]
[tex]C(50) = 825.56[/tex]
So, the table is:
[tex]\left[\begin{array}{cc}x&C(x)\\0& und e fin e d\\50&825.56\end{array}\right][/tex]
(e) The speed that minimize cost
[tex]C(x) = 100 + \frac x9 + \frac{36000}{x}[/tex]
Differentiate
[tex]C'(x) = \frac{1}{9} - \frac{36000}{x^2}[/tex]
Equate to 0
[tex]\frac{1}{9} - \frac{36000}{x^2} = 0[/tex]
Collect like terms
[tex]\frac{36000}{x^2} = \frac{1}{9}[/tex]
Cross multiply
[tex]x^2 = 36000 \times 9[/tex]
[tex]x^2 = 324000[/tex]
Take square roots
[tex]x = 569.20997883[/tex]
Approximate to the nearest 50
[tex]x = 569[/tex]
Read more about functions at:
https://brainly.com/question/18806107
