what is the effect on the graph of f(x) = x2 when it is transformed to h(x) = 1/6x2 - 9?
A. The graph of f(x) is horizontally stretched by a factor of 6 and shifted 9 units to the right.
B. The graph of f(x) is vertically compressed by a factor of 6 and shifted 9 units down.
C. The graph of f(x) is vertically compressed by a factor of 6 and shifted 9 units to the right.
D. The graph of f(x) is horizontally compressed by a factor of 6 and shifted 9 units down.

Respuesta :

Using shifting concepts, it is found that the correct option is:

B. The graph of f(x) is vertically compressed by a factor of 6 and shifted 9 units down.

---------------------------

  • The parent function is [tex]f(x) = x^2[/tex].
  • The first transformation is a multiplication by 1/6. Multiplying by 1/a is the same as vertically compressing by a factor of a, thus, it was vertically compressed by a factor of 6.
  • Then, 9 was subtracted. When a is subtracted from the function, it means that it was shifted down a units, thus, it was shifted down 9 units, and the correct option is B.

A similar problem is given at https://brainly.com/question/24465194