Solve the given initial-value problem. The DE is a Bernoulli equation.
, 1/2 dy + y3/2 = 1, y(0) = 16
dx
2
3
x
2
|
co
y = 1 + 63e
x
Show all work correctly

Solve the given initialvalue problem The DE is a Bernoulli equation 12 dy y32 1 y0 16 dx 2 3 x 2 co y 1 63e x Show all work correctly class=

Respuesta :

Your solution seems fine. What does the rest of the error message say?

[tex]\displaystyle y^{1/2}\frac{\mathrm dy}{\mathrm dx} + y^{3/2} = 1[/tex]

Substitute

[tex]z(x)=y(x)^{3/2} \implies \dfrac{\mathrm dz}{\mathrm dx}=\dfrac32y(x)^{1/2}\dfrac{\mathrm dy}{\mathrm dx}[/tex]

to transform the ODE to a linear one in z :

[tex]\displaystyle \frac23\frac{\mathrm dz}{\mathrm dx} + z = 1[/tex]

Divide both sides by 2/3 :

[tex]\displaystyle \frac{\mathrm dz}{\mathrm dx} + \frac32z = \frac32[/tex]

Multiply both sides by the integrating factor, [tex]e^{3x/2}[/tex] :

[tex]\displaystyle e^{3x/2}\frac{\mathrm dz}{\mathrm dx} + \frac32 e^{3x/2}z = \frac32 e^{3x/2}[/tex]

Condense the left side into the derivative of a product :

[tex]\displaystyle \frac{\mathrm d}{\mathrm dx}\left[e^{3x/2}z\right] = \frac32 e^{3x/2}[/tex]

Integrate both sides and solve for z :

[tex]\displaystyle e^{3x/2}z = \frac32 \int e^{3x/2}\,\mathrm dx \\\\ e^{3x/2}z = e^{3x/2} + C \\\\ z = 1 + Ce^{-3x/2}[/tex]

Solve in terms of y :

[tex]y^{3/2} = 1 + Ce^{-3x/2}[/tex]

Given that y (0) = 16, we have

[tex]16^{3/2} = 1 + Ce^0 \implies C = 16^{3/2}-1 = 63[/tex]

so that the particular solution is

[tex]\boxed{y^{3/2} = 1 + 63e^{-3x/2}}[/tex]