What is the midpoint of the segment shown below?
O A. (5,3)
O B. (5,6)
O C. (, 3)
O D. (56)

The midpoint formula is basically (averaging the x coordinates, averaging the y coordinates).
Point A: (3, 7)
Point B: (2, -1)
Midpoint x: (3 + 2) / 2 = 5 / 2
Mindpoint y: (7 - 1) / 2 = 3
Therefore, the midpoint of the segment is choice C (5/2, 3)
Answer:
Correct answer is Option C: [tex](\frac{5}{2} , 3 )[/tex]
Step-by-step explanation:
Given points (3, 7) and (2, -1), we can use the following Midpoint Formula to find out what is the halfway mark of the given segment:
[tex]M = (\frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]
Let x1 = 3
x2 = 2
y1 = 7
y2 = -1
Plug in these values into the Midpoint formula:
[tex]M = (\frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]
[tex]M = (\frac{3 + 2}{2} , \frac{-1 + 7}{2} )[/tex]
[tex]M = (\frac{5}{2} , \frac{6}{2} ) = (\frac{5}{2} , 3 )[/tex]
Therefore, the midpoint of the given segment is [tex](\frac{5}{2} , 3 )[/tex].