Respuesta :

The midpoint formula is basically (averaging the x coordinates, averaging the y coordinates).

Point A: (3, 7)

Point B: (2, -1)

Midpoint x: (3 + 2) / 2 = 5 / 2

Mindpoint y: (7 - 1) / 2 = 3

Therefore, the midpoint of the segment is choice C (5/2, 3)

Answer:

Correct answer is Option C: [tex](\frac{5}{2} , 3 )[/tex]

Step-by-step explanation:

Given points (3, 7) and (2, -1), we can use the following Midpoint Formula to find out what is the halfway mark of the given segment:

[tex]M = (\frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]

Let x1 = 3

x2 = 2

y1 = 7

y2 = -1

Plug in these values into the Midpoint formula:

[tex]M = (\frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]

[tex]M = (\frac{3 + 2}{2} , \frac{-1 + 7}{2} )[/tex]

[tex]M = (\frac{5}{2} , \frac{6}{2} ) = (\frac{5}{2} , 3 )[/tex]

Therefore, the midpoint of the given segment is [tex](\frac{5}{2} , 3 )[/tex].