contestada

A student releases a marble from the top of a 140cm ramp. The marble
increases speed steadily and reaches the bottom of the ramp with a speed of
130cm/s. Determine all unknowns and answer the following question.
How long did the marble take to reach the bottom of the ramp?

Respuesta :

Acceleration, speed where the speed changes over time, in both direction and speed, and simple time definition to modify, or the timeframe to alter, and the further calculation can be defined as follows:

Given:

[tex]\bold{\text{initial velocity} \ (U)} =0 \\\\\bolf{ \text{Final velocity}\ V}= 130 \frac{cm}{s}\\\\\bold{ \text{Displacement}} = 140\ cm\\[/tex]

To find:

Calculate time that will take by marble to bottom of the ramp.

Solution:

Using formula:

[tex]\to \bold{V^2=U^2 + 2 \times acceleration \times Displacement}[/tex]

[tex]\to \bold{V=U+a \times Time}[/tex]

By the first formula we calculate the acceleration:

[tex]\to \bold{130^2 = 0 + 2 \times acceleration \times 140}\\\\[/tex]

[tex]\to \bold{130^2 = 2 \times acceleration \times 140}[/tex]

[tex]\to \bold{acceleration = \frac{130^2}{2\times 140}}[/tex]

                          [tex]\bold{= \frac{130\times 130}{2\times 140}}\\\\\bold{= \frac{130\times 13}{2\times 14}}\\\\\bold{= \frac{65\times 13}{14}}\\\\\bold{= \frac{ 845}{14}}\\\\\bold{= 60.35\ \frac{cm}{s^2}} \\\\[/tex]

After calculating the acceleration putting value into the second formula and calculate the time:

[tex]\to \bold{V=U + a \times Time}\\\\\to \bold{Time = \frac{V}{a}}\\\\[/tex]

              [tex]\bold{=\frac{130}{60.35} }\\\\\bold{=\frac{130}{60.35} }\\\\= \bold{2.15\ second}[/tex]

Learn more:

brainly.com/question/3344685