The inverse of the function f(x) = 4(x-3)² + 2 is [tex]f^{-1}(x) = \sqrt{\frac{x-2}{4} } + 3[/tex]
The given function is:
f(x) = 4(x - 3)² + 2
To find the inverse of the function:
Make x as the subject of the formula
[tex]4(x-3)^2 = f(x) - 2\\(x-3)^2 = \frac{f(x)-2}{4} \\x - 3 = \sqrt{\frac{f(x)-2}{4} } \\x = \sqrt{\frac{f(x)-2}{4} } + 3[/tex]
Replace x by [tex]f^{-1}(x)[/tex] and replace f(x) by x
[tex]f^{-1}(x) = \sqrt{\frac{x-2}{4} } + 3[/tex]
Therefore, the inverse of the function is:
[tex]f^{-1}(x) = \sqrt{\frac{x-2}{4} } + 3[/tex]
Learn more here: https://brainly.com/question/17285960