Answer:
[tex](216-18 \pi) \text{ square units}[/tex]
Step-by-step explanation:
First, calculate the area of the rectangle.
Here, length = 18 units and Width = 12 units
The formula for calculating the area of the rectangle is [tex]A=L \times B[/tex]
[tex]A=18 \times 12\\=216 \text{ square units.}[/tex]
The radius of the semi-circle is 6 units.
The formula for calculating the area of the semi-circle is [tex]A=\dfrac{\pi \times r^2}{2}[/tex].
[tex]A=\dfrac{\pi \times 6^2}{2}\\=\dfrac{36 \pi}{2}\\=18 \pi \text{ square units.}[/tex]
The area of the shaded region is equal to the difference of area of the rectangle and area of the semi-circle.
[tex]\text{Required Shaded Area }=(216-18 \pi) \text{ square units}[/tex]