Answer:
[tex]\frac{25}{18}[/tex]
Step-by-step explanation:
Hi there!
We want to evaluate the expression [tex]4(\frac{1}{9} + e^2)+3f[/tex] if [tex]e=\frac{1}{3}[/tex], and [tex]f=\frac{1}{6}[/tex]
We can first simplify the expression down.
Do the distributive property:
[tex]\frac{4}{9} + 4e^2 + 3f[/tex]
Now substitute 1/3 for e and 1/6 for f:
[tex]\frac{4}{9} + 4(\frac{1}{3})^2 + 3(\frac{1}{6})[/tex]
According to the order of operations, raise 1/3 to the second power:
[tex]\frac{4}{9} +4 * \frac{1}{9}[/tex] + [tex]3(\frac{1}{6})[/tex]
Multiply
[tex]\frac{4}{9} + \frac{4}{9} + 3(\frac{1}{6})[/tex]
Multiply the 3(1/6)
[tex]\frac{4}{9} + \frac{4}{9} + \frac{1}{2}[/tex]
Simplify
[tex]\frac{8}{9} + \frac{1}{2}[/tex]
Find the common denominator and add together
[tex]\frac{16}{18} + \frac{9}{18}[/tex]
Simplify again
[tex]\frac{25}{18}[/tex]
The answer can be left as that.
Hope this helps!