Step-by-step explanation:
Distance between (−3,6) and (−9,−2):
[tex](x_1, y_1) [/tex]
= coordinates of the first point
= (-3,6)
[tex](x_2, y_2) [/tex]
= coordinates of the second point
= (-9,-2)
[tex]d = \sqrt{(x_2 - {x _1) }^{2} + (y_2 - {y _1) }^{2}} [/tex]
[tex]d = \sqrt{ (- 9 - ( - 3) {)}^{2} + ( - 2 + 6 {)}^{2} } [/tex]
[tex]d \: = \sqrt{ (- 6 {)}^{2} +( 4 {)}^{2} } [/tex]
[tex]d = \sqrt{36 + 16} [/tex]
[tex]d = \sqrt{52} [/tex]
[tex]d = \sqrt{13 \times 2 \times 2} [/tex]
[tex]d = 2 \sqrt{13} [/tex]