Respuesta :

Given -

  • [tex]\sf{\angle{EFG}=105\degree}[/tex]

To prove-

  • x° = 75°

Solution-

Assumption

AD || EH

If AD || EH and CG is a transversal.

Then,

[tex]\implies\sf{\angle{BFE+EFG}=180\degree\:(linear\:pair)}[/tex]

[tex]\implies\sf{\angle{BFE+105\degree}=180\degree}[/tex]

[tex]\implies\sf{\angle{BFE}=180\degree-\:105\degree}[/tex]

[tex]\implies\bf{\angle{BFE}=75\degree}[/tex]

We know,

[tex]\sf{\angle{BFE}=\angle{CBA}=75\degree\:(corresponding\:angles)}[/tex]

[tex]\sf{\angle{BFE}=x\degree=75\degree}[/tex]

[tex]\therefore\boxed{\bf{x\degree=75\degree}}[/tex]