Respuesta :
First you have to find the 20th term... an = a1 + (n - 1)d n = 20 a1 = 8 d = 8 now lets sub... a20 = 8 + (20 - 1) * 8 a20 = 8 + 19 * 8 a20 = 8 + 152 a20 = 160 s20 is the sum of all the number till 20. so we will use the sum formula... sn = n(a1 + an) / 2 s20 = 20 (8 + 160) / 2 s20 = 20 (168) / 2 s20 = 3360/2 s20 = 1680 any questions ?
Answer:
[tex]S_{20} =1680[/tex].
Step-by-step explanation:
Given : 8 + 16 + 24 + 32 +…..
To find : Find S20
Solution : We have given 8 + 16 + 24 + 32 +…..
First term = 8.
Common difference = 16 - 8= 8
24 -16 = 8.
Sum of n term ( [tex]S_{n} =\frac{n}{2}[2 a+(n-1)d][/tex].
Where, a = first term , d =common difference .
For n = 20 , a = 8 , d = 8
[tex]S_{20} =\frac{20}{2}[2*8+(20-1) 8][/tex].
[tex]S_{20} =10[16+(19) 8][/tex].
[tex]S_{20} =10[16+152][/tex].
[tex]S_{20} =10[168][/tex].
[tex]S_{20} =1680[/tex].
Therefore,4) [tex]S_{20} =1680[/tex].