∆ABC is reflected about the line y = -x to give ∆A'B'C' with vertices A'(-1, 1), B'(-2, -1), C(-1, 0). What are the vertices of ∆ABC?

Respuesta :

A (-1,1) B (1,2) C (0,1)

Answer: [tex]A(-1,1),B(1,2),C(0,1)[/tex]

Step-by-step explanation:

The rule to reflected a figure about the line y=-x on graph is given by :-

[tex](x,y)\rightarrow(-y,-x)[/tex]

Therefore, if ∆ABC is reflected about the line y = -x to give ∆A'B'C' with vertices [tex]A'(-1, 1), B'(-2, -1), C(-1, 0)[/tex].

Then, the vertices of ∆ABC will be :_

[tex]A'(-1, 1)\rightarrow\ A(-1,1)\\B'(-2, -1)\rightarrow\ B(1,2)\\C(-1, 0)\rightarrow\ C(0,1)[/tex]

The vertices of ∆ABC= [tex]A(-1,1),B(1,2),C(0,1)[/tex]