Given the function g ( x ) = x 2 + 10 x + 20 g(x)=x 2 +10x+20, determine the average rate of change of the function over the interval − 9 ≤ x ≤ − 3 −9≤x≤−3.

Respuesta :

Step-by-step explanation:

the average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

so,

(g(-3) - g(-9)) / (-3 - -9)

g(-3) = (-3)² + 10×-3 + 20 = 9 - 30 + 20 = -1

g(-9) = (-9)² + 10×-9 + 20 = 81 - 90 + 20 = 11

-3 - -9 = -3 + 9 = 6

(-1 - 11) / 6

-12/6 = -2

the average change rate in this interval is -2 (or fully -2/1).