find the value of x and y.

Answer:
[tex]x=13[/tex]
[tex]y=23[/tex]
Step-by-step explanation:
[tex](12x - 41) + 5x = 180[/tex]
[tex]12x + 5x = 180 + 41[/tex]
[tex]17x = 221[/tex]
[tex] \frac{17x}{17} = \frac{221}{17} [/tex]
[tex]x = \frac{221}{17} [/tex]
[tex]x = 13[/tex]
[tex](12 \times 13 - 41) + 5(13) = 180[/tex]
[tex]115 + 65 = 180[/tex]
[tex]180 = 180[/tex]
[tex]vertical \: angles[/tex]
[tex](12x - 41) = 5y[/tex]
[tex]12 \times 13 - 41 = 5y[/tex]
[tex]115 = 5y[/tex]
[tex] \frac{115}{5} = \frac{5y}{5} [/tex]
[tex]y = \frac{115}{5} [/tex]
[tex]y = 23[/tex]
[tex]5y=12x-41[/tex]
[tex]5×23=12×13-41[/tex]
[tex]115=115[/tex]
We can use the two terms in x to find the value of x.
Angles on a line have a sum of 180°
⇒ (12x -41)° + 5x° = 180°
⇒ (12x + 5x -41)° = 180°
⇒ 17x° = 180 + 41°
⇒ x = 13
We can use the same principle of angles to find y
5x° + 5y° = 180°
since x = 13; 5(13) + 5y = 180
5y = 115
y = 23