Respuesta :

Let y be f(x)

[tex]\\ \sf\longmapsto y=4x-12[/tex]

Swipe the values

[tex]\\ \sf\longmapsto x=4y-12[/tex]

  • Isolate y

[tex]\\ \sf\longmapsto 4y=x+12[/tex]

[tex]\\ \sf\longmapsto y=\dfrac{x+12}{4}[/tex]

[tex]\\ \sf\longmapsto y=\dfrac{1}{4}x+3[/tex]

Hence.

[tex]\\ \sf\longmapsto f^{-1}(x)=\dfrac{1}{4}x+3[/tex]

Let y=f(x)

  • y=4x-12

Now interchange the variables

  • x=4y-12

The y we need now

  • x+12=4y

Divide both sides by 4

  • y=(x+12)/4

This is the inverse