Respuesta :

The distance between two points is the number of units between them

The possible value of x is -66

The given parameters are:

[tex]\mathbf{S = (-6,8)}[/tex]

[tex]\mathbf{T = (x,-3)}[/tex]

[tex]\mathbf{ST = 61}[/tex]

Distance ST is calculated using:

[tex]\mathbf{d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}[/tex]

So, we have:

[tex]\mathbf{d = \sqrt{(-6 - x)^2 + (8 - -3)^2}}[/tex]

[tex]\mathbf{d = \sqrt{(-6 - x)^2 + (8 +3)^2}}[/tex]

[tex]\mathbf{d = \sqrt{(-6 - x)^2 + 11^2}}[/tex]

Substitute 61 for d

[tex]\mathbf{ \sqrt{(-6 - x)^2 + 11^2} = 61}[/tex]

Square both sides

[tex]\mathbf{ (-6 - x)^2 + 11^2 = 61^2}[/tex]

[tex]\mathbf{ (-6 - x)^2 + 121 = 3721}[/tex]

Subtract 121 from both sides

[tex]\mathbf{ (-6 - x)^2 = 3721 - 121}[/tex]

[tex]\mathbf{ (-6 - x)^2 = 3600}[/tex]

Take square roots of both sides

[tex]\mathbf{ -6 - x = 60}[/tex]

Add 6 to both sides

[tex]\mathbf{ - x = 60 + 6}[/tex]

[tex]\mathbf{ - x = 66}[/tex]

Multiply both sides by -1

[tex]\mathbf{ x = -66}[/tex]

Hence, the possible value of x is -66

Read more about distance at:

https://brainly.com/question/2669795