Respuesta :
Answer:
[tex]\boxed {\sf x=6}[/tex]
Step-by-step explanation:
[tex]\sf 5(x - 3) + 2 = 5(2x - 8) - 3[/tex]
Use the Distributive property :
[tex]\boxed { \sf Multiply\: 5\: by \:x\: and \:5\: by\: 3:}[/tex]
→ [tex]\sf 5x-15+2[/tex]
→ [tex]\sf -15+2[/tex]
[tex]\sf =-13[/tex]
[tex]\sf 5x-13[/tex]
______________________
[tex]\sf 5\left(2x-8\right)-3[/tex]
[tex]\boxed {\sf Multiply\: 5 \: by \: 2x \: and \: 5\: by\: -8:}[/tex]
→ [tex]\sf 10x-40-3[/tex]
→ [tex]\sf -40-3=-43[/tex]
[tex]\sf 10x-43[/tex]
_______________
[tex]\sf 5x-13=10x-43[/tex]
[tex]\boxed {\sf Add\: 13 \:to\: both\: sides:}[/tex]
[tex]\sf 5x-13+13=10x-43+13[/tex]
[tex]\sf 5x=10x-30[/tex]
[tex]\boxed{\sf Subtract\: -10x\: from\: both\: sides:}[/tex]
[tex]\sf 5x-10x=10x-30-10x[/tex]
[tex]\sf -5x=-30[/tex]
[tex]\boxed{\sf Divide \:both \:sides\: by \:-5:}[/tex]
[tex]\sf \cfrac{-5x}{-5}=\cfrac{-30}{-5}[/tex]
[tex]\sf x=6[/tex]
___________________________
Answer:
x = 6
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Distributive Property
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Terms/Coefficients
Step-by-step explanation:
Step 1: Define
Identify
5(x - 3) + 2 = 5(2x - 8) - 3
Step 2: Solve for x
- (Parenthesis) Distribute: 5x - 15 + 2 = 10x - 40 - 3
- Simplify [Order of Operations]: 5x - 13 = 10x - 43
- [Subtraction Property of Equality] Subtract 10x on both sides: -5x - 13 = -43
- [Addition Property of Equality] Add 13 on both sides: -5x = -30
- [Division Property of Equality] Divide -5 on both sides: x = 6