Answer:
[tex]y = a{x}^{2} + bx + c \\ 6 = a{2}^{2} + 2b + c \\ 6 = 4a+ 2b + c...(1) \\ 16 = 9a+ 3b + c...(2) \\ \frac{dy}{dx} = 7 = 4a + b...(3) \\ (2) - (1) \\ 10= 5a + b...(4) \\ (4) - (3) \\ 5a - 4a = 10 - 7 \\ \boxed{a = 3 }\\ sub \: a \: im \: (4) \\ 10 = 15 + b \\ \boxed{b = - 5} \\ sub \: a \: b \: in \: (1) \\ 6 = 4(3) + 2( - 5) + c \\\boxed{c = 4}[/tex]