Answer:
n = 10
Step-by-step explanation:
Using the rule of exponents
• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex]
• [tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex]
Then
2² × [tex]2^{n}[/tex] = [tex](2^4)^{3}[/tex]
[tex]2^{2+n}[/tex] = [tex]2^{12}[/tex]
Since the bases on both sides are equal, both 2 then equate exponents
2 + n = 12 ( subtract 2 from both sides )
n = 10