Respuesta :

Answer:

[tex]9 \frac{ {d}^{2}y }{ {dx}^{2} } - 12 \frac{dy}{dx} + 4y = 0) \div 9 \\ \frac{ {d}^{2}y }{ {dx}^{2} } - \frac{4}{3} \frac{dy}{dx} + \frac{4}{9} y = 0 \\ y_{1}(x) = {e}^{ \frac{2}{3} x} \\ p(x) = - \frac{4}{3} \\ y_{2}(x) = y_{1}(x) \int \frac{ {e}^{ - \int \: p(x)dx} }{ {(y_{1}(x))}^{2} } dx \\ = {e}^{ \frac{2}{3} x} \int \frac{ {e}^{ \int \: \frac{4}{3} dx} }{ { ({e}^{ \frac{2}{3} x})}^{2} } dx \\= {e}^{ \frac{2}{3} x} \int \frac{ {e}^{ \frac{4}{3} x} }{ { {e}^{ \frac{4}{3} x}}} dx \\ = {e}^{ \frac{2}{3} x} \int dx \\ \boxed{y_{2}(x) =x{e}^{ \frac{2}{3} x}}[/tex]