Step-by-step explanation:
[tex]\large\underline{\sf{Solution-}}[/tex]
Consider,
[tex]\rm \longmapsto\:\dfrac{ \sqrt{7} + i \sqrt{3} }{ \sqrt{7} - i \sqrt{3}} + \dfrac{ \sqrt{7} - i \sqrt{3} }{ \sqrt{7} + i \sqrt{3} } [/tex]
On taking LCM, we get
[tex]\rm \: = \: \dfrac{ {( \sqrt{7} + i \sqrt{3})}^{2} + {( \sqrt{7} - i \sqrt{3})}^{2} }{( \sqrt{7} + i \sqrt{3})( \sqrt{7} - i \sqrt{3})} [/tex]
We know,
[tex] \purple{\rm \longmapsto\:\boxed{\tt{ {(x + y)}^{2} + {(x - y)}^{2} = 2( {x}^{2} + {y}^{2})}}} \\ [/tex]
and
[tex] \purple{\rm \longmapsto\:\boxed{\tt{ (x + y)(x - y) = {x}^{2} - {y}^{2} \: }}} \\ [/tex]
So, using these Identities, we get
[tex]\rm \: = \: \dfrac{2\bigg[ {( \sqrt{7})}^{2} + {(i \sqrt{3}) }^{2} \bigg]}{ {( \sqrt{7}) }^{2} - {(i \sqrt{3})}^{2} } [/tex]
[tex]\rm \: = \: \dfrac{2(7 + 3 {i}^{2})}{7 - {3i}^{2} } [/tex]
We know,
[tex] \purple{\rm \longmapsto\:\boxed{\tt{ {i}^{2} = - 1}}} \\ [/tex]
So, using this, we get
[tex]\rm \: = \: \dfrac{2(7 - 3)}{7 + 3} [/tex]
[tex]\rm \: = \: \dfrac{2 \times 4}{10} [/tex]
[tex]\rm \: = \: \dfrac{4}{5} [/tex]
Hence,
[tex] \red{\rm\implies \:\boxed{\sf{ \dfrac{ \sqrt{7} + i \sqrt{3} }{ \sqrt{7} - i \sqrt{3}} + \dfrac{ \sqrt{7} - i \sqrt{3} }{ \sqrt{7} + i \sqrt{3} } \: is \: purely \: real}}}[/tex]