[tex]\large\underline{\sf{Solution-}}[/tex]
Let assume that,
[tex]\rm \longmapsto\:A \: = \:\{x\} \: [/tex]
and
[tex]\rm \longmapsto\:B \: = \:\{y\} \: [/tex]
[tex]\rm\implies \:A \: \cap \: B = \phi [/tex]
and
[tex]\rm \longmapsto\:A\cup B = \{x, \: y\}[/tex]
We know,
Power set of a set A is defined as set of subsets of A.
So,
[tex]\rm \longmapsto\:P(A) = \{ \phi ,\: x\}[/tex]
and
[tex]\rm \longmapsto\:P(B) = \{ \phi ,\: y\}[/tex]
and
[tex]\rm\implies \:P(A \: \cap \: B) =\{ \phi \}[/tex]
and
[tex]\rm \longmapsto\:P(A\cup B) = \{\phi ,x,y,xy\}[/tex]
Now, Consider
[tex]\rm \longmapsto\:P(A)\cup P(B) = \{\phi ,x,y\}[/tex]
and
[tex]\rm \longmapsto\:P(A\cup B) = \{\phi ,x,y,xy\}[/tex]
[tex]\rm\implies \:\boxed{\tt{ \: P(A)\cup P(B) \: \ne \: P(A\cup B) \: }} \\ [/tex]
Now, Consider
[tex]\rm \longmapsto\:P(A\cap B) = \{\phi \}[/tex]
and
[tex]\rm \longmapsto\:P(A) \: \cap \: P( B) = \{\phi \}[/tex]
[tex]\rm\implies \:\boxed{\tt{ \: P(A)\cap P(B) \: = \: P(A\cap B) \: }} \\ [/tex]