the cylinder has radius 4√3 and hight h. the total surface area of the cylinder is 56π√6. find the exact value of h giving the answer in the form a√2 + b√3 where a and b are both integers.​

Respuesta :

The area of the cylinder is a function of its height (h) and radius, ([tex]\mathbf{4\sqrt 3}[/tex])

The exact value of h is: [tex]\mathbf{7\sqrt 2- 4\sqrt 3}[/tex]

The given parameters are:

[tex]\mathbf{Area =56\pi\sqrt 6}[/tex]

[tex]\mathbf{r=4\sqrt 3}[/tex]

The surface area of a cylinder is calculated as:

[tex]\mathbf{Area = 2\pi rh + 2\pi r^2}[/tex]

Substitute values for Area

[tex]\mathbf{56\pi\sqrt 6= 2\pi rh + 2\pi r^2}[/tex]

Divide through by pi

[tex]\mathbf{56\sqrt 6= 2 rh + 2r^2}[/tex]

Substitute value for r

[tex]\mathbf{56\sqrt 6= 2 (4\sqrt 3)h + 2(4\sqrt 3)^2}[/tex]

[tex]\mathbf{56\sqrt 6= 8h\sqrt 3 + 2\times 48}[/tex]

[tex]\mathbf{56\sqrt 6= 8h\sqrt 3 + 96}[/tex]

Collect like terms

[tex]\mathbf{8h\sqrt 3 = 56\sqrt 6- 96}[/tex]

Make h the subject

[tex]\mathbf{h = \frac{56\sqrt 6}{8\sqrt 3}- \frac{96}{8\sqrt 3}}[/tex]

[tex]\mathbf{h = 7\sqrt 2- \frac{12}{\sqrt 3}}[/tex]

Rationalize

[tex]\mathbf{h = 7\sqrt 2- \frac{12\sqrt 3}{3}}[/tex]

[tex]\mathbf{h = 7\sqrt 2- 4\sqrt 3}[/tex]

Hence, the exact value of h is: [tex]\mathbf{7\sqrt 2- 4\sqrt 3}[/tex]

Read more about surface areas t:

https://brainly.com/question/25131428