Respuesta :
A parabola is a mirror-symmetrical U-shape.
- The equation of the parabola is [tex]\mathbf{y = -\frac{1}{640}(x - 80)^2 + 10}[/tex]
- The focus is [tex]\mathbf{Focus = (80, -1760)}[/tex]
- The directrix is [tex]\mathbf{y = \frac{1}{640}}[/tex]
- The axis of the symmetry of parabola is: [tex]\mathbf{x = 80}[/tex]
From the question, we have:
[tex]\mathbf{Vertex: (h,k) = (80,10)}[/tex]
[tex]\mathbf{Origin: (x,y) = (0,0)}[/tex]
The equation of a parabola is:
[tex]\mathbf{y = a(x - h)^2 + k}[/tex]
Substitute the values of origin and vertex in [tex]\mathbf{y = a(x - h)^2 + k}[/tex]
[tex]\mathbf{0 = a(0 - 80)^2 + 10}[/tex]
[tex]\mathbf{0 = a(- 80)^2 + 10}[/tex]
[tex]\mathbf{0 = 6400a + 10}[/tex]
Collect like terms
[tex]\mathbf{6400a =- 10}[/tex]
Solve for a
[tex]\mathbf{a =- \frac{1}{640}}[/tex]
Substitute the values of a and the vertex in [tex]\mathbf{y = a(x - h)^2 + k}[/tex]
[tex]\mathbf{y = -\frac{1}{640}(x - 80)^2 + 10}[/tex]
The focus of a parabola is:
[tex]\mathbf{Focus = (h, \frac{k+1}{4a})}[/tex]
Substitute the values of a and the vertex in [tex]\mathbf{Focus = (h, \frac{k+1}{4a})}[/tex]
[tex]\mathbf{Focus = (80, \frac{10+1}{4 \times -\frac{1}{640}})}[/tex]
[tex]\mathbf{Focus = (80, -\frac{11}{\frac{1}{160}})}[/tex]
[tex]\mathbf{Focus = (80, -11\times 160)}[/tex]
[tex]\mathbf{Focus = (80, -1760)}[/tex]
The equation of the directrix is:
[tex]\mathbf{y = -a}[/tex]
So, we have:
[tex]\mathbf{y = \frac{1}{640}}[/tex] ----- the directrix
The axis of symmetry is:
[tex]\mathbf{x = -\frac{b}{2a}}[/tex]
We have:
[tex]\mathbf{y = -\frac{1}{640}(x - 80)^2 + 10}[/tex]
Expand
[tex]\mathbf{y = -\frac{1}{640}(x^2 -160x + 6400) +10}[/tex]
Expand
[tex]\mathbf{y = -\frac{1}{640}x^2 +\frac{1}{4}x - 10 +10}[/tex]
[tex]\mathbf{y = -\frac{1}{640}x^2 +\frac{1}{4}x }[/tex]
A quadratic function is represented as:
[tex]\mathbf{y = ax^2 + bx + c}[/tex]
So, we have:
[tex]\mathbf{a = -\frac{1}{640}}[/tex]
[tex]\mathbf{b = \frac{1}{4}}[/tex]
Recall that:
[tex]\mathbf{x = -\frac{b}{2a}}[/tex]
So, we have:
[tex]\mathbf{x = -\frac{1/4}{2 \times -1/640}}[/tex]
[tex]\mathbf{x = \frac{1/4}{1/320}}[/tex]
This gives
[tex]\mathbf{x = \frac{320}{4}}[/tex]
[tex]\mathbf{x = 80}[/tex]
Hence, the axis of the symmetry of parabola is: [tex]\mathbf{x = 80}[/tex]
Read more about parabola at:
https://brainly.com/question/21685473