Answer:
x = x = 9 ±[tex]\sqrt{13}[/tex] or x ≈ 12.61 or x ≈ 5.39
Step-by-step explanation:
x² - 18x + 68 Solve by completing the square.
x² - 18x = - 68
Now complete the square and add that number to both sides of the equation.
1/2 (of the coefficient of the x term)² = (1/2 · -18)² = 81 .
x² - 18x + 81 = -68 + 81
(x - 9) (x - 9) = 13 Now find the square root of both sides
[tex]\sqrt{(x - 9)(x - 9)}[/tex] =[tex]\sqrt{13}[/tex] Solve
x - 9 = ±[tex]\sqrt{13}[/tex] Solve for x
x = 9 ±[tex]\sqrt{13}[/tex]
x = 9 + [tex]\sqrt{13}[/tex] or x = 9 - [tex]\sqrt{13}[/tex]
x ≈ 12.61 or x ≈ x 5.39