HELP Use the graph to determine how many solutions the equation -x^2-4x-4=-2 has

Question:
[tex]-x^{2} -4x-4=-2\\[/tex]; solve for X over the real numbers
Answer:
x = [tex]-2 -\sqrt{2}[/tex]
x = [tex]\sqrt{2} - 2[/tex]
Step-by-step explanation:
1. Solve for x over the real numbers: [tex]-x^2-4x-4=-2\\[/tex]
2. Multiply both sides by [tex]-1\\[/tex]: [tex]x^2+4x+4=2\\[/tex]
3. Wrote the left hand side as a square: [tex](x+2)^2=2\\[/tex]
4. Take the square root of both sides: [tex]x+2=\sqrt{2}[/tex] or [tex]x+2=-\sqrt2\\[/tex]
5. Subtract 2 from both sides: [tex]x=\sqrt{2}-2[/tex] or [tex]x+2=-\sqrt2[/tex]