A vertical parabola goes through (-2,-18), (3, -13), and (5, -39). Use matrices to solve for D, E, and F,
given the general form x2 + y2 + Dx + Ey + F = 0 (since it is a vertical parabola there is not a
yż term).

Respuesta :

The general formula for the parabola is [tex]x^{2}+y^{2}-21\cdot x +51\cdot y +548 = 0[/tex].

We need the knowledge of three distinct points to determine all coefficients of the vertical parabola based on the following general formula:

[tex]x^{2} + y^{2} + D\cdot x + E\cdot y + F = 0[/tex] (1)

If we know that [tex](x_{1}, y_{1}) = (-2, -18)[/tex], [tex](x_{2}, y_{2}) = (3,-13)[/tex] and [tex](x_{3}, y_{3}) = (5,-39)[/tex], then we have the following system of linear equations:

[tex]-2\cdot D -18\cdot E + F = -328[/tex] (2)

[tex]3\cdot D -13\cdot y + F = -178[/tex] (3)

[tex]5\cdot D -39\cdot E + F = -1546[/tex] (4)

The solution of the system of equations is: [tex]D = -21[/tex], [tex]E = 51[/tex], [tex]F = 548[/tex].

The general formula for the parabola is [tex]x^{2}+y^{2}-21\cdot x +51\cdot y +548 = 0[/tex].

We kindly invite to check this question on parabolae: https://brainly.com/question/4074088