Respuesta :
Answer:
- 1/4
Step-by-step explanation:
[tex]\frac{1-\sqrt{x} }{x^{2}-1 } = \frac{(1-\sqrt{x})*(1+\sqrt{x} ) }{(x+1)(x-1)(1+\sqrt{x} )} \\= \frac{1-x}{-(1-x)(x+1)(1+\sqrt{x} )} \\= - \frac{1}{(x+1)(1+\sqrt{x} )} \\ \lim_{->1} - \frac{1}{(x+1)(1+\sqrt{x} )} \\ = -\frac{1}{(1+1)(1+\sqrt{1}) } = - 1/4[/tex]