The measures of the angles and the lengths of the sides of the triangle can
be found using sine rule.
The correct responses are;
Reasons:
The given parameter are;
∠B = 65°20', b = 5.38 inches, c = 4.88 inches
∠C ≥ 90°
By sine rule, we have;
[tex]\dfrac{5.38}{sin(65^{\circ} 20')} = \mathbf{ \dfrac{4.88}{sin(\angle C)}}[/tex]
[tex]sin(\angle C) = \mathbf{ \dfrac{sin(65^{\circ} 20') \times 4.88}{5.38}}[/tex]
[tex]\angle C = arcsin \left(\dfrac{sin(65^{\circ} 20') \times 4.88}{5.38} \right) \approx \mathbf{ 55.517 ^{\circ}}[/tex]
∠C = 55.517° < 90°, therefore, the correct response is; None
[tex]\dfrac{sin(65^{\circ} 20')}{5.38} = \dfrac{4.88}{sin(\angle C)}[/tex]
∠A = 180° - 65°20' - 55.517° = 59.15° = 59°9'
∠A = 59°9'
Therefore;
[tex]\dfrac{5.38}{sin(65^{\circ} 20')} = \mathbf{ \dfrac{a}{sin(59.15^{})}}[/tex]
[tex]a = \dfrac{5.38 \times sin(59.15^{\circ}) }{sin(65^{\circ} 20')} \approx \mathbf{ 5.083}[/tex]
a ≈ 5.083 inches
Learn more here:
https://brainly.com/question/15018190