7.
Find all solutions to the following triangle. (Round your answers for angles A, C, A', and to the nearest minute. Round your answers for sides a and a'to two decimal places. If either triangle is not
possible, enter NONE In each corresponding answer blank.)
B = 65° 20', b = 5.38 inches, c = 4.88 inches
First triangle (assume C greater than or equal to 90°):
A= ____ degrees ____’
C=____ degrees ____’
a= ____ in

Respuesta :

The measures of the angles and the lengths of the sides of the triangle can

be found using sine rule.

The correct responses are;

  • A = 59 degrees 9'
  • C = None
  • a = 5.083 in.

Reasons:

The given parameter are;

∠B = 65°20', b = 5.38 inches, c = 4.88 inches

∠C ≥ 90°

By sine rule, we have;

[tex]\dfrac{5.38}{sin(65^{\circ} 20')} = \mathbf{ \dfrac{4.88}{sin(\angle C)}}[/tex]

[tex]sin(\angle C) = \mathbf{ \dfrac{sin(65^{\circ} 20') \times 4.88}{5.38}}[/tex]

[tex]\angle C = arcsin \left(\dfrac{sin(65^{\circ} 20') \times 4.88}{5.38} \right) \approx \mathbf{ 55.517 ^{\circ}}[/tex]

∠C = 55.517° < 90°, therefore, the correct response is; None

[tex]\dfrac{sin(65^{\circ} 20')}{5.38} = \dfrac{4.88}{sin(\angle C)}[/tex]

∠A = 180° - 65°20' - 55.517° = 59.15° = 59°9'

∠A = 59°9'

Therefore;

[tex]\dfrac{5.38}{sin(65^{\circ} 20')} = \mathbf{ \dfrac{a}{sin(59.15^{})}}[/tex]

[tex]a = \dfrac{5.38 \times sin(59.15^{\circ}) }{sin(65^{\circ} 20')} \approx \mathbf{ 5.083}[/tex]

a ≈ 5.083 inches

Learn more here:

https://brainly.com/question/15018190