Let
[tex]x = 6 + \dfrac1{2 + \dfrac1{6 + \dfrac1{2 + \cdots}}}[/tex]
Then
[tex]x = 6 + \dfrac1{2 + \dfrac1x}[/tex]
and solving for x gives
[tex]x = 6 + \dfrac x{2x + 1}[/tex]
[tex]x = \dfrac{13x + 6}{2x + 1}[/tex]
[tex]x(2x+1) = 13x + 6[/tex]
[tex]2x^2 + x = 13x + 6[/tex]
[tex]2x^2 - 12x - 6 = 0[/tex]
[tex]x^2 - 6x - 3 = 0[/tex]
By the quadratic formula,
[tex]x = 3 \pm 2\sqrt{3}[/tex]
but x must be a positive number, so only the positive square root solution is valid.
[tex]x = 3 + 2\sqrt{3}[/tex]
We identify a = c = 3 and b = 2, so a + b + c = 8.