We make use of the identity,
a² - b² = (a - b) (a + b)
with a = 5 and b = 7i. Multiply the numerator and denominator by the complex conjugate of 5 + 7i, or 5 - 7i :
(-8 + 3i)/(5 + 7i) = (-8 + 3i)/(5 + 7i) • (5 - 7i)/(5 - 7i)
(-8 + 3i)/(5 + 7i) = (-8 + 3i) (5 - 7i) / (5² - (7i)²)
(-8 + 3i)/(5 + 7i) = (-8 + 3i) (5 - 7i) / (25 - (-49))
(-8 + 3i)/(5 + 7i) = (-8 + 3i) (5 - 7i) / 74
Expand the numerator on the right side:
(-8 + 3i)/(5 + 7i) = ((-8)•5 + 3i•5 + (-8)•(-7i) + 3i•(-7i)) / 74
(-8 + 3i)/(5 + 7i) = (-40 + 15i + 56i - 21i²) / 74
(-8 + 3i)/(5 + 7i) = (-40 + 71i - 21(-1)) / 74
(-8 + 3i)/(5 + 7i) = (-19 + 71i) / 74