Respuesta :

[tex]y \geqslant - x + 3[/tex]

[tex]y < \frac{1}{2} x + 3 \\ [/tex]

now just put the coordinates of point ( 1 , 1 ) in the above inequalities and check if they correct or wrong :

[tex]1 \geqslant - 1 + 3[/tex]

[tex]1 < \frac{1}{2} (1) + 3 \\ [/tex]

So :

[tex]1 \geqslant 2[/tex]

[tex]1 < 3.5[/tex]

1 is lower than 3.5 of course but geuss what ?

Is 1 higher than 2 or equal to 2 ? Nope not at all

Thus the correct answer would be :

" no , it is not a solution "