Respuesta :
Answer:
Below in bold.
Step-by-step explanation:
Using the quadratic formula :
roots = [-16 +/-√(16^2 - 4*16*5)] / (2*16)
= -0.5 +/- √(-64) /32
= -0.5 +/- 8i/32
= -0.5 + 0.25i and -0.5 - 0.25i
[tex]\sf\longmapsto 16x^2+16x+5=0[/tex]
[tex]\sf\longmapsto x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]\sf\longmapsto x=\dfrac{-16\pm\sqrt{16^2-4(16)(5)}}{2(16)}[/tex]
[tex]\sf\longmapsto x=\dfrac{-16\pm√256-320}{32}[/tex]
[tex]\sf\longmapsto x=\dfrac{-16\pm√-64}{32}[/tex]
[tex]\sf\longmapsto x=\dfrac{-16\pm8i}{32}[/tex]
[tex]\sf\longmapsto x=\dfrac{-2\pm i}{4}[/tex]
[tex]\sf\longmapsto x=\dfrac{-1}{2}\pm\dfrac{1}{4}i [/tex]