Respuesta :

Answer:

[tex]{\huge{\green{\mathsf{z\:=\sqrt{\frac{4x}{3y}}}}}[/tex]

Step-by-step explanation:

Given the algebraic equation, [tex]{\huge{\green{\mathsf{x\:=\frac{3yz^2}{4}}}}[/tex], and that we must solve for z :

The first step is to multiply both sides by 4 to eliminate the fraction on the right-hand side of the equation:

[tex]{\huge{\green{\mathsf{x\:=\frac{3yz^2}{4}}}}[/tex]

[tex]{\huge{\green{\mathsf{(4)\:x\:=\frac{3yz^2}{4}(4)}}}[/tex]

4x = 3yz²

Next, divide both sides by 3y:

[tex]{\huge{\green{\mathsf{\frac{4x}{3y}\:=\frac{3yz^2}{3y}}}}[/tex]

[tex]{\huge{\green{\mathsf{\frac{4x}{3y}\:=z^2}}}[/tex]

Lastly, take the square root of both sides to isolate the variable, z :

[tex]{\huge{\green{\mathsf{\sqrt{\frac{4x}{3y}}\:=\sqrt{z^2}}}}[/tex]

[tex]{\huge{\green{\mathsf{z\:=\sqrt{\frac{4x}{3y}}}}}[/tex]

Therefore, the equation for z is:   [tex]{\huge{\green{\mathsf{z\:=\sqrt{\frac{4x}{3y}}}}}[/tex]

Please find attached photograph for your answer.

Hope it helps.

Do comment if you have any query.

Ver imagen Аноним