Respuesta :

Solution:

[tex] \frac{ {4x}^{2} - 100}{4x(x - 5)} \\ = \frac{4( {x}^{2} - 25) }{4x(x - 5)} \\ = \frac{4 ( {x)}^{2} - ( {5)}^{2} }{4x(x - 5)} \\ = \frac{4(x - 5)(x + 5)}{4x(x - 5)} \\ cancel \: \: \: out \: \: \: (x - 5) \: \: \: from \: \: \: both \: \: \: numerator \: \: \: and \: \: \: denominator \\ = \frac{4(x + 5)}{4x} \\ cancel \: \: \: out \: \: \: 4\: \: \: from \: \: \: both \: \: \: numerator \: \: \: and \: \: \: denominator \\ = \frac{x + 5}{x} \\ = \frac{x}{x} + \frac{5}{x} \\ = 1 + \frac{5}{x} [/tex]

Answer:

[tex]1 + \frac{5}{x} [/tex]

Hope it helps.

Do comment if you have any query.