Express the given in terms of the logarithms of prime numbers:
[tex]log_{4} 405[/tex]
[tex]log_{7}(\frac{8}{81} )[/tex]

Respuesta :

The required expression in terms of logarithm of prim numbers are;

[tex]log_4405=log_4(3^4\times 5)=log_43^3+log_45[/tex]

[tex]log_7(\frac{8}{81} )=log_7(\frac{2^3}{3^4} )=log_72^3-log_73^4[/tex]

Prime numbers are numbers that can only be divisible by 1 and itself.

From the given logarithmic expression, we will need to write 405, 8, and 81 as the product of prime numbers

405 = 3 * 3 * 3 * 3 * 5

405 = 3^4 * 5

8= 2* 2 * 2

8 = 2^3

81 = 3 * 3 * 3 * 3

81 = 3^4

The logarithm expression [tex]log_4405 \ and \ log_7(\frac{8}{81} )[/tex] can be expressed in terms of prime numbers as;

[tex]log_4405=log_4(3^4\times 5)=log_43^3+log_45[/tex]

Similarly;

[tex]log_7(\frac{8}{81} )=log_7(\frac{2^3}{3^4} )=log_72^3-log_73^4[/tex]

Learn more here: https://brainly.com/question/23004769