Respuesta :
Answer:
sin α = [tex]\frac{y}{r}[/tex] = [tex]\frac{1}{\sqrt{10} }[/tex]
cos α = [tex]\frac{x}{r}[/tex] = [tex]\frac{3}{\sqrt{10} }[/tex]
tan α = [tex]\frac{y}{x}[/tex] = [tex]\frac{1}{3}[/tex]
cot α = [tex]\frac{x}{y}[/tex] = [tex]\frac{3}{1}[/tex]
sec α = [tex]\frac{r}{x}[/tex] = [tex]\frac{\sqrt{10} }{3}[/tex]
csc α = [tex]\frac{r}{y}[/tex] = [tex]\frac{\sqrt{10} }{1}[/tex]
Step-by-step explanation:
If the point is given on the terminal side of an angle, then:
Calculate the distance between the point given and the origin:
r = [tex]\sqrt{x^2+y^2}[/tex]
Here it is: [tex]\sqrt{3^2+1^2}[/tex] = [tex]\sqrt{9+1}[/tex] = [tex]\sqrt{10}[/tex]
So we have:
x = 3
y = 1
r = [tex]\sqrt{10}[/tex]
Now we can calculate all 6 trig, functions:
sin α = [tex]\frac{y}{r}[/tex] = [tex]\frac{1}{\sqrt{10} }[/tex]
cos α = [tex]\frac{x}{r}[/tex] = [tex]\frac{3}{\sqrt{10} }[/tex]
tan α = [tex]\frac{y}{x}[/tex] = [tex]\frac{1}{3}[/tex]
cot α = [tex]\frac{x}{y}[/tex] = [tex]\frac{3}{1}[/tex]
sec α = [tex]\frac{r}{x}[/tex] = [tex]\frac{\sqrt{10} }{3}[/tex]
csc α = [tex]\frac{r}{y}[/tex] = [tex]\frac{\sqrt{10} }{1}[/tex]