The terminal side of an angle θ in standard position passes through the point (3, 1). Calculate the exact values of the six trig functions for angle θ.

Respuesta :

Answer:

sin α = [tex]\frac{y}{r}[/tex] = [tex]\frac{1}{\sqrt{10} }[/tex]

cos α = [tex]\frac{x}{r}[/tex] = [tex]\frac{3}{\sqrt{10} }[/tex]

tan α = [tex]\frac{y}{x}[/tex] = [tex]\frac{1}{3}[/tex]

cot α = [tex]\frac{x}{y}[/tex] = [tex]\frac{3}{1}[/tex]

sec α = [tex]\frac{r}{x}[/tex] = [tex]\frac{\sqrt{10} }{3}[/tex]

csc α = [tex]\frac{r}{y}[/tex] = [tex]\frac{\sqrt{10} }{1}[/tex]

Step-by-step explanation:

If the point is given on the terminal side of an angle, then:

Calculate the distance between the point given and the origin:

r = [tex]\sqrt{x^2+y^2}[/tex]

Here it is: [tex]\sqrt{3^2+1^2}[/tex] = [tex]\sqrt{9+1}[/tex] = [tex]\sqrt{10}[/tex]

So we have:

x = 3

y = 1

r = [tex]\sqrt{10}[/tex]

Now we can calculate all 6 trig, functions:

sin α = [tex]\frac{y}{r}[/tex] = [tex]\frac{1}{\sqrt{10} }[/tex]

cos α = [tex]\frac{x}{r}[/tex] = [tex]\frac{3}{\sqrt{10} }[/tex]

tan α = [tex]\frac{y}{x}[/tex] = [tex]\frac{1}{3}[/tex]

cot α = [tex]\frac{x}{y}[/tex] = [tex]\frac{3}{1}[/tex]

sec α = [tex]\frac{r}{x}[/tex] = [tex]\frac{\sqrt{10} }{3}[/tex]

csc α = [tex]\frac{r}{y}[/tex] = [tex]\frac{\sqrt{10} }{1}[/tex]