Respuesta :

The remainder of the equation is [tex]\rm 28x+30[/tex].

Given that,

When the equation [tex]\rm 3x^3-2x^2+4x-3[/tex] is divided by [tex]\rm x^2+3x+3[/tex].

We have to find,

The remainder of the equation?

According to the question,

The equation [tex]\rm 3x^3-2x^2+4x-3[/tex] is divided by [tex]\rm x^2+3x+3[/tex].

On the division of the polynomial, the remainder is,

[tex]\dfrac{\rm 3x^3-2x^2+4x-3}{\rm x^2+3x+3}[/tex]

Factorize the equation to convert this into the simplest form,

[tex]\rm 3x^3-2x^2+4x-3\\\\3x^3-11x^2+9x^2+9x+28x-33x-33+30\\\\Taking \ the \ common \ terms \ and \ simplify\ the\ equation\\\\3x^3+9x^2+9x+11x^2+33x-33+28x+30\\\\3x(x^2+3x+3) - 11(x^2+3x+3) + 28x+30\\\\(3x+11) (x^2+3x+3) +28x +30[/tex]

Now, the equation can be written as,

[tex]\rm = \dfrac{(3x+11) (x^2+3x+3) +28x +30}{ x^2+3x+3}\\\\= \dfrac{(3x+11) (x^2+3x+3) }{ x^2+3x+3} + \dfrac{28x +30}{ x^2+3x+3}\\\\= (3x+11) + \dfrac{28x +30}{ x^2+3x+3}\\\\[/tex]

The relation between the divisor, remainder, and quotient is,

[tex]\rm = Quotient + \dfrac{Remainder}{Divisor}[/tex]

On comparing with the equation,

The remainder becomes 28x +30.

Hence, The required remainder of the equation is [tex]\rm 28x+30[/tex].

For more details refer to the link given below.

https://brainly.com/question/25880057