Step-by-step explanation:
Slope-intercept form: y = mx + b
Solve for [tex]\frac{y2-y1}{x2-x1}[/tex]
[tex]y2-y1 = \frac{11}{12} -\frac{19}{20}[/tex]
[tex]x2-x1 = \frac{1}{3} -\frac{2}{5}[/tex]
To solve for the fractions you need a common denominator.
[tex]y2-y1 = \frac{11*20}{12*20} -\frac{19*12}{20*12} = \frac{220}{240} -\frac{228}{240}=\frac{-8}{240} = \frac{-1}{30}[/tex]
[tex]x2-x1 = \frac{1*5}{3*5} -\frac{2*3}{5*3} = \frac{5}{15} -\frac{6}{15}=\frac{-1}{15}[/tex]
To divide fractions you keep (the first equation), change (the division sign to multiplication), and flip (the second fraction).
[tex]\frac{y2-y1}{x2-x1}=\frac{\frac{-1}{30} }{\frac{-1}{15} } = \frac{-1}{30}*\frac{15}{-1} =\frac{-15}{-30}=\frac{1}{2}[/tex]
[tex]\frac{11}{12}[/tex] = ([tex]\frac{1}{2}[/tex])*([tex]\frac{1}{3}[/tex])+b
[tex]\frac{11}{12}[/tex] = ([tex]\frac{1}{6}[/tex])+b
[tex]\frac{11}{12}-\frac{1}{6}[/tex] = b
[tex]\frac{11*6}{12*6}-\frac{1*12}{6*12}=\frac{66}{72} -\frac{12}{72} =\frac{54}{72}=.75[/tex]
b = .75
y = [tex]\frac{1}{2}+.75[/tex]