Answer: -0.65 approximately
Work Shown:
[tex]\log_{9}(0.24) = \frac{\log(0.24)}{\log(9)}\\\\\log_{9}(0.24) = \frac{\log(0.03*8)}{\log(3^2)}\\\\\log_{9}(0.24) = \frac{\log(3*10^{-2}*2^3)}{\log(3^2)}\\\\\log_{9}(0.24) = \frac{\log(3)+\log(10^{-2})+\log(2^3)}{\log(3^2)}\\\\\log_{9}(0.24) = \frac{\log(3)-2\log(10)+3\log(2)}{2\log(3)}\\\\\log_{9}(0.24) \approx \frac{0.477-2*1+3*0.301}{2*0.477}\\\\\log_{9}(0.24) \approx \frac{-0.62}{0.954}\\\\\log_{9}(0.24) \approx -0.649895\\\\\log_{9}(0.24) \approx -0.65\\\\[/tex]