A sphere has an area equal to 4800 cm2. Considering π = 3, what is the measure of its radius? * 15 cm 10 cm 144 cm 12 cm 20 cm​

Respuesta :

Answer:

20 cm

Step-by-step explanation:

Use the formula

A=4πr^2

Solving for radius

[tex]r = 1/2 \sqrt{A/\pi } = 1/2 \sqrt{4800/\pi }[/tex] ≈ 19.5441

We are given –

[tex] \sf \begin{cases} \sf A_{\circ} = 4\: 800\: cm^2 \\ \sf \pi = 3 \\ \sf r = \:?\: cm\end{cases}[/tex]

  • A sphere is a three-dimensional object that results from the rotation of a circle around its diameter.The spherical surface area is given by–

  • [tex] \pink{\bf\boxed{ \bf{A = 4 \pi \cdot r^2}}}[/tex]

Just use the formulas for the sphere's area to determine the radius.

[tex]\qquad[/tex] [tex]\red{\twoheadrightarrow\bf A_{\bigcirc} = 4 \pi \cdot r^2} [/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 4\:800 = 4 \cdot 3 \cdot r^2 [/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 4\:800 = 12 \cdot r^2 [/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r^2 = \dfrac{4\:800}{12} [/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r^2 = 400 [/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r = \sqrt{400} [/tex]

[tex]\qquad[/tex] [tex]\red{\twoheadrightarrow\bf r = 20\: cm} [/tex]

Henceforth, the radius of the sphere measures [tex] \bf = 20\: cm [/tex].