Respuesta :
Answer:
20 cm
Step-by-step explanation:
Use the formula
A=4πr^2
Solving for radius
[tex]r = 1/2 \sqrt{A/\pi } = 1/2 \sqrt{4800/\pi }[/tex] ≈ 19.5441
We are given –
[tex] \sf \begin{cases} \sf A_{\circ} = 4\: 800\: cm^2 \\ \sf \pi = 3 \\ \sf r = \:?\: cm\end{cases}[/tex]
- A sphere is a three-dimensional object that results from the rotation of a circle around its diameter.The spherical surface area is given by–
- [tex] \pink{\bf\boxed{ \bf{A = 4 \pi \cdot r^2}}}[/tex]
Just use the formulas for the sphere's area to determine the radius.
[tex]\qquad[/tex] [tex]\red{\twoheadrightarrow\bf A_{\bigcirc} = 4 \pi \cdot r^2} [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 4\:800 = 4 \cdot 3 \cdot r^2 [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 4\:800 = 12 \cdot r^2 [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r^2 = \dfrac{4\:800}{12} [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r^2 = 400 [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf r = \sqrt{400} [/tex]
[tex]\qquad[/tex] [tex]\red{\twoheadrightarrow\bf r = 20\: cm} [/tex]
Henceforth, the radius of the sphere measures [tex] \bf = 20\: cm [/tex].