Under the Big Top elephant. Ella [2500 kg]. is attracted to Phant, the 3,000 kg elephant. They are separated by 8 m. What is the gravitational attraction between them? G=6.67×10^-11 (-11 is an exponent)​​

Respuesta :

leena

Hi there!

We can use the same equation for Gravitational Force:

[tex]\large\boxed{F_g = G\frac{m_1m_2}{r^2}}[/tex]

Fg = force due to gravity (N)

G = gravitational constant

m1,m2 = masses of objects (kg)

r = distance between objects (m)

Plug in the values provided:

[tex]F_g = (6.67*10^{-11})\frac{(2500)(3000)}{8^2} = \large\boxed{7.814 * 10^{-6}N }[/tex]

[tex]\huge\bf\underline{\underline{\pink{A}\orange{N}\blue{S}\green{W}\red{E}\purple{R:-}}}[/tex]

Here we've been given,

  • Universal gravitational constant (G) = [tex] \sf{6.67 \times {10}^{ - 11} }[/tex]

  • Mass of object 1 (m1) = 2500 kg

  • Mass of object 2 (m2) = 3000 kg

  • Distance between two objects (r) = 8 m

We have to find the gravitational attraction force (Fg) = ?

The standard formula to solve is given by,

[tex]:\implies\tt{F_g = g \frac{m_1m_2}{ {r}^{2} } } [/tex]

[tex]:\implies\tt{F_g = 6.67 \times {10}^{ - 11} \times \frac{(2500 )(3000)}{ {8}^{2} } }[/tex]

[tex]:\implies\tt{F_g = 6.67 \times {10}^{ - 11} \times \frac{7500000}{64} }[/tex]

[tex]:\implies\tt{F_g = 7.814 \times {10}^{ - 6} }[/tex]

  • Gravitational force of attraction is 7.814 × 10^-6 N.