Respuesta :
the length of the side of this square is [tex]4\sqrt{2} \:or \:5.65[/tex]cm
Answer:
Solutions Given:
let diagonal of square be AC: 8 cm
let each side be a.
As diagonal bisect square.
let it forms right angled triangle ABC .
Where diagonal AC is hypotenuse and a is their opposite side and base.
By using Pythagoras law
hypotenuse ²=opposite side²+base side²
8²=a²+a²
64=2a²
a²=[tex]\frac{64}{2}[/tex]
a²=32
doing square root on both side
[tex]\sqrt{a²}=\sqrt{32}[/tex]
a=±[tex]\sqrt{2*2*2*2*2}[/tex]
a=±2*2[tex]\sqrt{2}[/tex]
Since side of square is always positive so
a=4[tex]\sqrt{2}[/tex] or 5.65 cm

Answer:
Given :
↠ The diagonal of a square is 8 cm.
To Find :
↠ The length of the side of square.
Using Formula :
Here is the formula to find the side of square if diagonal is given :
[tex]\implies{\sf{a = \sqrt{2} \dfrac{d}{2}}} [/tex]
Where :
- ➺ a = side of square
- ➺ d = diagonal of square
Solution :
Substituting the given value in the required formula :
[tex]{\dashrightarrow{\pmb{\sf{ \: a = \sqrt{2} \dfrac{d}{2}}}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times \dfrac{8}{2}}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times \cancel{\dfrac{8}{2}}}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times 4}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = 4\sqrt{2}}}}[/tex]
[tex]{\dashrightarrow{\sf{\underline{\underline{\red{ \: a = 5.65 \: cm}}}}}}[/tex]
Hence, the length of the side of square is 5.6 cm.
[tex]\underline{\rule{220pt}{3pt}}[/tex]