Answer:
The first thing we have to do is change and state all the units so that we can use our ideal gas law equation ([tex]PV = nRT[/tex]).
650 mmHg is a pressure unit, we have to convert this to kiloPascals. We know that 760 mmHg gives us 101 kPa.
[tex]650 \ mmHg \ * \ \frac{101kPa}{760 mmHg} = 86 \ kPa[/tex]
P = 86kPa
T = 15°C + 273K = 288K
R (Gas constant) = 8.31 kj/mol
Molar mass of Ammonia ([tex]NH_{3}[/tex]) = (1 x 3) + (14) = 17g/mol
n (moles) = [tex]\frac{mass}{molar \ mass}[/tex] [tex]= \frac{56.8}{17} =[/tex] 3.34 mol
V = ?
Rearrange the equation to solve for Volume:
[tex]V = \frac{nRT}{P}[/tex]
Substitute the values inside:
V = [tex]\frac{(3.34)(8.31)(288)}{(86)} = 93 L (rounded)[/tex]
Therefore 93 L of volume is occupied by the ammonia gas.