Find the indefinite integral

Answer: [tex]\displaystyle \frac{2}{3}x^{3/2} + \frac{2}{5}x^{1/2}+C\\\\\\[/tex]
This is equivalent to [tex]\frac{2}{3}\sqrt{x^3} + \frac{2}{5}\sqrt{x}+C\\\\\\[/tex]
========================================================
Work Shown:
[tex]\displaystyle \int\left(\sqrt{x} + \frac{1}{5\sqrt{x}}\right)dx\\\\\\ \displaystyle \int\left(\sqrt{x}\right)dx + \int\left(\frac{1}{5\sqrt{x}}\right)dx\\\\\\ \displaystyle \int\left(x^{1/2}\right)dx + \int\left(\frac{1}{5}x^{-1/2}\right)dx\\\\\\ \displaystyle \int\left(x^{1/2}\right)dx + \frac{1}{5}\int\left(x^{-1/2}\right)dx\\\\\\[/tex]
[tex]\displaystyle \frac{1}{1+1/2}x^{1+1/2} + \frac{1}{5}*\frac{1}{1+(-1/2)}x^{1+(-1/2)}+C\\\\\\ \displaystyle \frac{1}{3/2}x^{3/2} + \frac{1}{5}*\frac{1}{1/2}x^{1/2}+C\\\\\\ \displaystyle \frac{2}{3}x^{3/2} + \frac{1}{5}*2x^{1/2}+C\\\\\\ \displaystyle \frac{2}{3}x^{3/2} + \frac{2}{5}x^{1/2}+C\\\\\\[/tex]