Respuesta :

Answer:

x = - 6

Step-by-step explanation:

Parallel lines have equal slopes

Calculate the slopes of EF and CD and equate them

Calculate slopes using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} } [/tex]

with (x₁, y₁ ) = E (- 6, 14 ) and F (- 2, 4 )

[tex]m_{EF} [/tex] = [tex]\frac{4-14}{-2-(-6)} [/tex] = [tex]\frac{-10}{-2+6} [/tex] = [tex]\frac{-10}{4} [/tex] = - [tex]\frac{5}{2} [/tex]

Repeat with (x₁, y₁ ) = C (x, 16 ) and (x₂, y₂ ) = D (2, - 4 )

[tex]m_{CD} [/tex] = [tex]\frac{-4-16}{2-x} [/tex] = [tex]\frac{-20}{2-x} [/tex]

Equate the 2 slopes and solve for x

[tex]\frac{-20}{2-x} [/tex] = [tex]\frac{5}{-2} [/tex] ( cross- multiply )

5(2 - x) = 40 ( divide both sides by 5 )

2 - x = 8 ( subtract 2 from both sides )

- x = 6 ( multiply both sides by - 1 )

x = - 6