[tex] \begin{gathered} \rm Find \: the \: cuberoot \: of \: the \: determinant \: given \: below. \\ \rm write \: the \: answer \: in \: the \: form \: \frac{a}{b}, \: where \: a \: and \: b \: are \\ \rm positive \: integers \: and \: gcd (a,b) = 1.\end{gathered} \\ \begin{gathered}\left | \begin{matrix} \dfrac{ - {2019}^{ 2 } }{\sqrt[5]{80}} & \dfrac{ {2020}^{2} }{ \sqrt[5]{ {80}^{2} } }& \dfrac{ - {2021}^{2} }{ \sqrt[5]{ {80}^{3} } } \\ \\ \dfrac{ {2022}^{2} }{ \sqrt[5]{ {80}^{4} } } & \dfrac{ - {2023}^{2} }{ \sqrt[5]{ {80}^{5} } } & \dfrac{ {2024}^{2} }{ \sqrt[5]{ {80}^6 } } \\ \\ \dfrac{ - {2025}^{2} }{ \sqrt[5]{ {80}^{7} } }& \dfrac{ {2026}^{2} }{ \sqrt[5]{ {80}^{8} } } & \dfrac{ - {2027}^{2} }{ \sqrt[5]{ {80}^9 } } \end{matrix} \right | \end{gathered}[/tex]​

Respuesta :

Quick warning that this is not the most elegant solution.

Let [tex]x=2019[/tex] and [tex]y=80^{1/5}[/tex], so the matrix whose determinant we want looks like this:

[tex]M = \begin{bmatrix} -\dfrac{x^2}y & \dfrac{(x+1)^2}{y^2} & -\dfrac{(x+2)^2}{y^3} \\\\ \dfrac{(x+3)^2}{y^4} & -\dfrac{(x+4)^2}{y^5} & \dfrac{(x+5)^2}{y^6} \\\\ -\dfrac{(x+6)^2}{y^7} & \dfrac{(x+7)^2}{y^8} & -\dfrac{(x+8)^2}{y^9} \end{bmatrix}[/tex]

Since it's a 3x3 matrix, we can just compute the determinant directly using a Laplace expansion. Along the first row, for instance, we get

[tex]\det(M) = -\dfrac{x^2}y \begin{vmatrix} -\dfrac{(x+4)^2}{y^5} & \dfrac{(x+5)^2}{y^6} \\\\ \dfrac{(x+7)^2}{y^8} & -\dfrac{(x+8)^2}{y^9} \end{vmatrix} \\\\ - \dfrac{(x+1)^2}{y^2} \begin{vmatrix} \dfrac{(x+3)^2}{y^4} & \dfrac{(x+5)^2}{y^6} \\\\ -\dfrac{(x+6)^2}{y^7} & -\dfrac{(x+8)^2}{y^9} \end{vmatrix} \\\\ - \dfrac{(x+2)^2}{y^3} \begin{vmatrix} \dfrac{(x+3)^2}{y^4} & -\dfrac{(x+4)^2}{y^5} \\\\ -\dfrac{(x+6)^2}{y^7} & \dfrac{(x+7)^2}{y^8} \end{vmatrix}[/tex]

[tex]\det(M) = -\dfrac{x^2}y \cdot \dfrac{(x+4)^2(x+8)^2-(x+5)^2(x+7)^2}{y^{14}} \\\\ - \dfrac{(x+1)^2}{y^2} \cdot \dfrac{(x+5)^2(x+6)^2 - (x+3)^2(x+8)^2}{y^{13}} \\\\ - \dfrac{(x+2)^2}{y^3} \cdot \dfrac{(x+3)^2(x+7)^2 - (x+4)^2(x+6)^2}{y^{12}}[/tex]

[tex]\det(M) = \dfrac{\text{numerator}}{y^{15}}[/tex]

where the numerator is

[tex]\bigg((x+5)^2(x+7)^2 - (x+4)^2(x+8)^2\bigg)x^2 \\ + \bigg((x+3)^2(x+8)^2 - (x+5)^2(x+6)^2\bigg) (x+1)^2 \\ + \bigg((x+4)^2(x+6)^2 - (x+3)^2(x+7)^2\bigg) (x+2)^2[/tex]

Now just simplify. The numerator reduces drastically to a constant, 216. Then

[tex]\det(M) = \dfrac{216}{\left(80^{1/5}\right)^{15}} = \dfrac{6^3}{80^3} = \left(\dfrac3{40}\right)^3 = \boxed{\dfrac{27}{64,000}}[/tex]