Respuesta :

[tex] \qquad \quad \large {\pmb{ \frak { \mid {\overline{ \underline{\purple{ \bigstar \: Required \: Answer \: \bigstar}}}}}} \mid}\\[/tex]

[tex]\qquad[/tex] To find the value of (x - 3y) ², the binomial formula squared is: (a - b)² = a² - 2ab + b²

  • If we apply binomial squared with our binomial, we get:

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\pmb{(x-3y)^2= x^2 - \underbrace{2(x)(3y)}_{6xy} +9 y^2}}[/tex]

  • Now, if we try to unite the corresponding terms with each one or simply call simplify, we get:

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\sf { - 6xy+ x^2+ 9y^2}}[/tex]

  • Again, with the data included in the problem, we can get a numerical expression:

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\sf { - 6(4)+ 26}}[/tex]

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\sf{ -24 + 26}}[/tex]

  • Doing our subtraction we get that the value of the expression is equal to:

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\pmb 2}[/tex]

  • Henceforth, The result of this expression is 2.

____________________________________