Answer:
see explanation
Step-by-step explanation:
Using the identities
sec x = [tex]\frac{1}{cosx} [/tex] , csc x = [tex]\frac{1}{sinx} [/tex]
sin²x + cos²x = 1
Consider the left side
[tex]\frac{cos0}{sec0} [/tex] + [tex]\frac{sin0}{csc0} [/tex]
= [tex]\frac{cos0}{\frac{1}{cos0} } [/tex] + [tex]\frac{sin0}{\frac{1}{sin0} } [/tex]
= cos²Θ + sin²Θ
= 1 = right side , thus proven