Find the area and the perimeter of both shapes. explain what you are doing and clearly stating all formulas used.



Answer:
see below
Step-by-step explanation:
a) diameter = 5 ⇒ radius (r) = 2.5
area of circle = [tex]\pi [/tex]r² = [tex]\pi [/tex] x 2.5² = 6.25[tex]\pi [/tex] = 19.6 cm² (3 sf)
perimeter = circumference of circle
= 2[tex]\pi[/tex]r = 2 x [tex]\pi [/tex] x 2.5 = 5[tex]\pi [/tex] = 15.7 cm (3 sf)
b) area of sector = [tex]\frac{\theta}{360} \times \pi r^2[/tex]
= [tex]\frac{300}{360} \times\pi 2^2[/tex]
= [tex]\frac{10}{3} \pi [/tex] = 10.5 cm² (3 sf)
perimeter = circumference - arc length
= 2[tex]\pi [/tex]r - [tex]\frac{\theta}{360} \times2 \pi r[/tex]
= 4[tex]\pi [/tex] - [tex]\frac{60}{360} \times4 \pi[/tex]
= [tex]\frac{10}{3} \pi [/tex] = 10.5 cm (3 sf)
c) area = largest circle - smallest circle
= [tex]\pi [/tex]3² - [tex]\pi [/tex]2²
= 5[tex]\pi [/tex] = 15.7 cm² (3 sf)
perimeter = circumference of largest circle + circumference of smallest circle
= 2[tex]\pi[/tex] x 3 + 2[tex]\pi[/tex] x 2
= 10[tex]\pi [/tex] = 31.4 cm (3 sf)